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Abstract ‘We briefly review in a general context the theory of non-unitary transformations
between conservative dynamics with internal time and dissipative evolutions, developed
previously 1in the context of statistical mechanics and apply the results te show the existence
of a smulanty transformation between the wave equation and the dissipative telegrapbist
equation

i. Introduction

The evolution of a conservative system 15 expressed in terms of a unitary group U, on
a separable Hhilbert space . The tume parameter ¢ takes all integer values or all real
values. The group property reflects the reversible character of the evolution. Typical
examples of conservative systems are the evolution of phase densities of Harmltoman
systems and the evolution of wavefunctions or density operators of quantum systems
The hyperbolic wave equation is an infinite-dimensional Hamiltoman system which
defines a unitary evolution 1n the Hilbert space of imhal data with finite energy

The censervative systems for which non-umtary transformations to dissipative
systems have been constructed are qualified by the existence of internal time.

An internal time operator for the unitary evolution U, is a self-adjoint operator T
with the followunig property:

T, =T+l (1)

The internal time operator is canomically conjugate to the anti-self-adjoint generator
L of the unitary group U, =e"™
(L, T)=-1I (2)
The time operator T allows the attribution of the average age (v, Tib) to the states
¢ e % The average age of the evolved state U, keeps step with the external clock
time t
(U, TUy = (i, T+ 1. (3

Internal time operators for unitary dynamics were introduced [1] in the context of
unstable dynamical systems of the Kolmogorcv type. The unitary group U, defines the
evolution of densities in the Liouville space and the spectral projections of the time
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operator are the conditional expectations over the time-evolved K-partition. Similarly,
quantum systems admit time operators on the Liouville space of density operators if
the Hamiltonian has an absolutely continwous specirum [2] Time operators were also
introduced for relativistic fields {3-6].

Conservative systems with internal time are related through non-unitary transforma-
tions to a class of autonomous dissipative systems whose evolution is described by a
contraction semigroup W, on a Hilbert space  that approaches the umque equilibrium
monotonically for long times. The time parameter ¢ takes positive integer values or
positive real values if evolution is directed towatds the future. The approach to
equilibrium is described by the condition

| wapll® (4)
decreases monotonically to zero as ¢ +00. Here the vectors e 3 tepresent the
non-equilibrium deviations of the physical system in consideration. The gqualifying
feature of such systems is irreversible undirectness of the evolution Typical examples
of such dissipative systems inciude the heat equation, the Boltzmann gquation, the
stattonary Markov processes and the hyperbolic telegraphist equation

The generators of dissipative evolutions W, = e®' satisfy the property

(D, ) +{t, D)< 0 &)

for every ¢ in the domain of ®@. This condition is equivalent to the condition that the
dissipation part of @ is negative:

Yd+D")=K <0 (6)

Operators satisfying (3) or (6) were catled dissipative operators by Phillips [7] who
introduced the concept in his study of dissipative hyperbolic systems such as the
Telegraphist equation.

The nen-unitary transformation theory of dynamical systems with interaal time has
been developed as an exact theory of irreversibility in the context of statistical mechanics
by Misra, Prigogine and Courbage [8-13] where the positivity of the states ¢ is
necessary. Here the condition of positivity is relaxed and the non-unitary transformation
theory is applied in the more general context of unstable dynamical systems with
internal time such as the wave propagation. In this particular case, the wave equation
1s transformed mnte the telegraphist equation.

Unitary dynamics U, with internal time T are related to dissipative evolutions W,
through the 1ntertwining transformation A:

AU = WA t=0. Q)

A non-unitary similarity transformation A may be constructed as an operator
function of the internal time T:

+x0

A=A(T)=_[ A(7) dP,. (8)

-0

P, are the spectral projections of the nme operator:

T= J- ) rdP,. 9

—oo
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The function A(7) can be any positive real function decreasing monotonically to
zero as r- -+, The resulting dissipative evolution

W, =AU A t=0 (10)

anses as a change of representation of the dynamical evolution U, through the
non-unitary transformation A, The function A(+) acts as a weight over the contributions
of the spectral projections of the time operator to the evolution.

The dissipative character of the evolution W, follows immediately. For any state
i in the domain D, of A

po={wes| [T oipa <o)

g= At denotes the A-transformed state and we have

WP =|AUAT |

= UUTAUAT G|
= AT+ DA (T |

+co 2 -
-[Tar alPAI°
which decreases monotonica..; o zero as - +co,
If the function A(7) is bounded then the operator A{T) is a bounded self-adjoint
operator. However, the inverse operator A™'(T) cannot be bounded.
If the function A{r) is not bounded, then the operator A{T) is self-adjoint if the

domain D, is dense [14].
If the domain D, is not dense then the contraction semigroup is defined on the

AT+
A{7)

- - . .
cuhenars nf vactare d for whirh IJ AL i in tha damain 1)
SROSPacT Gi VoUiUis ¢/ x00 WiOIGH Uit o 15 100 wiC GOIMAIN iqy

Typical examples of the weighting function A{r) are the logarithmically concave
functions of the form

A(T) =g N

where y(r) is & convex function.
For the simple choice

Alr)=e™" (11)

where v is a constant parameter the unbounded operator A(T) = ¢ 77 1s densely defined.

To see this let us first note that for any vector ¢, the measures d||P.¢° associated
with the speciral projections P, of T are absolutely continuous because the time
operater has absofutely continuous spectrum. Therefore they can be written as

diP g =p,(7) d7

where p,(7) is the corresponding spectral density defined as the Radon-Nicodym
derivative of d||P[I* with respect to the Lebesque measure dr.

The set D of all vectors € # for which the corresponding spectral density py{r)
belongs to the space spanned by all functions of the form e™7 f(7), f(r) being a
polynomial in the real variable 7, is dense.



2726 I E Antoniou and B Misra

It can be easily seen that the domain D is inciuded in the domams of both A and
A~! and that D is also invanant under U,. For example,

+x

ﬂmpnz:‘( e p(r)dr
which is finite for p,{7) of the form e 7 f(+) where f(7) is a polynomial on the real
variable 7.

TL el
11iE

tho aracatacs A amd A7 ae wa
CICIUIL, LI UpGratula L v uy a3 Ve

11 ac a aa oronn W
I as the semigroup W, =
defined on the dense domain D and since W, is a contraction semigroup, is domain
can be extended to the entire Hilbert space .

The generator @ of the A-transformed evolution
W,=AUA'=¢"
is the dissipative operator
D= ALA =L+ K (12)

A1 ara
1% are

with

- ™) = 2 et Fls ol — = 1\‘(7)
K=K{TY=A{T}A(T) Jﬁw HW_A(T) -
the negative dissipation part (6} of d.
The proof follows immediately. Consider any vector ¢ in the domain D, of the
generator & The strong limit [15] definition of the generator means:

i [ A o] =0
& lim U,{UfAif,)A"‘—Itb_@wI] o
& tim U,(A(T+:))A“—I¢_®w ” —o
& 1 ]U,(A(T-I—t)!—A(T))A"¢+U,I—I¢w¢w” o,

Since [U{A{T+1)—A(T)A 'Y/t converges strongly to A{T)A™! and (U, ~1TI)/t
converges strongly to the anti-self-adjoint generator L, the generator & is the sum
L+A(T)A™" in the common domain of L and A(T)A™:

A'(r)

po=pnfu|[ [EO
& L d’ A(‘T)
The domain Dy, of & depends in general upon the form of A. One needs to prove
therefore that the domain D, is dense for any concrete choice of the A-transformation.
For example, 1f A'(7)/A(r) is 2 bounded real function, then Dy, = D, | which is dense,

as L is an anti-self-adjoint operator, This is indeed the case for the special choice (11)
of the A-transformation. For this choice the dissipative generator @ is

®=ALA '=L—~i (13)

In the case of Kolmogorov systems, where the spectral projeciions of the time
operator are the conditional expectations over the time-evolved K-partition, the non-
unitary similarity A leads to a Markov process. This was first proved for the Baker
shift [8] and then for Bernoulli [9] and Kolmogorov [10] systems.

)

dP.gi* < +oo}.
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An intertwining transformation 1s also provided by the spectral projection P, or
any of the spectral projections P, of the time operator (9). The proof 15 given [11] for
K-systems where the condition of positivity preserving for the projections P, is also
assumed. The resulting dissipative evolution

W, =PUP

where P is any of the projections P,, is the restriction of the dynamics U, into the
P-subspace.

It is also of interest to mention what is known on the inverse problem, namely,
what kind of unitary dynamics can be transformed info dissipative evolutions through
intertwining transformations:

(i} If the intertwaning transformation is a projection, the condition that the unitary
dynamics admits a time operator is necessary. In this case the unitary dynamics is a
dilation [16] of the dissipative evolution. The corresponding theorem was stated n
{11} and proved in [13] for Kolmogorov systems, where the important question of
positivity of stutes arises.

{n} If the intertwining transformation A is a non-undary similarity, then the
operator M = A™A is a Lyapounov operator [1] for the unitary dynamics and it is only
known [1] that the generator of the unitary evolution must have absolutely continuous
spectrum. This condition is of course weaker than the existence of the time operator.
In the case of unitary evolutions of phase densities, this condition implies the strong
mixing property, which is weaker than the Kolmogorov property.

3. Non-upitary transformation of the wave eqgnation

The wave equation
g =Ay (14)

is a conservative dynamical system with internal time [3-6] The particular choice
A(r)=e " for the weight function of the non-umtary similarity transformation trans-
forms the wave equation {14) into the dissipative telegraphist equation:

N =Bg —2ydu— v = Ay (15)

The wave equation is an infinite-dimensional Hamiltonian system:

0= o)) g
&(¢)’ a o)\ / (
The space of square integrable initial data (¢, ¢) with finite energy
H=j d(x)3(7(x) + V() {17}
15 the Sobolev Hilbert space & with the scalar product

(0} (2)- ] arwrormer-var w

The time evolution U, of the Cauchy data in 3 [17] is

. -1
U (J:) _ ( cos Bt B 'sm Bt) (19)
] —Bsin Bt cos Bt
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where B =+/—A. The group U, preserves the energy (17) and the scalar product (18)
The anti-self-adjoint generator of the unitary group U, =e"' 15

0 I
L-—‘(A 0). (20)

An internal time operator for the wave equation has been constructed [3-6] from
the representations of the Poincaré aigebra. The e.xpiicit form of the time operator 1s

§ 2
2_. A""Mx)

()|

For the particular choice A{7)=¢™"" for the weight function, the generator L given
by (20; is transformed into the generator @ through (13).

Tha A _trancfarm
1€ A-ITansiormad wave €4

(O Do

-~ -~ &,

N9
< a'("- A -yl

& ald = Ad—2va - ¥'i

As a result of the particular construction of the A-transformation, the coefficients
-2y and —v" of the last two terms of (15} are not independent. The denved equation
(15} 15 not therefore the most general telegraphist equation.

The telegraphist equation is a dissipative hyperbolic equation describing waves
propagating with exponential dissipation of the amplitude. This equation arises also
as a relativistic heat equation if we introduce finite propagation velocity into the heat
equation, which is Galilei invariant and assumes infinite propagation velocity [18].

4. Concluding remarks

The non-unitary transformation of dynamical systems with internal time arises as a
limitation on the contributions of the future spectral projections of the time operator
to the dynamical evolution. In the case of projection P, all future projections P,
7> 7 are not realized and the evolution is restricted to the P, -subspace. In the case
of similarity A(T), the future projections are weighted with the decreasing function
A7)

TLis interpretation of A-transformation has a clear meaning for Kolmogorov systems
where the spectral projections of the time operator are coarse-graining projections of
conditional expectation over the cells of the K-partition. The progressive refinement
of the K-partition expresses the dynamical instability.

The resulting dissipative Markov semigroup W, is a best prediction for U,, made
by an observer who cannot follow precisely the progressive refinements of the K-
partition ad infinitum.

in fact, this construction has been proposed as an exact theory of irreversibility

7-12] in the context of staristical muchanics where the positivity of the states is
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In this work the condition of positivity 1s dropped This permits us to consider
more general functions A{7) which bring about the similarity transformation between
coistryative and dissipative evohutions.

A-transformations may aiso be seen as ‘transmutations’ [19) relating properties to
conservative equations with properties of dissipative equations.
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