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Abstract U'e briefl) m i e n  $0 general conreit the theory of non-unitary tranrformmonr 
between c ~ n ~ e w a t w e  dynamics with internal time and dlrrtpatwe ewlufmn~,  developed 
previously In the context ofstatistical mechanics and apply the results to $how the existence 
of il amrlarity tranrformatton between the w v e  equation and the disapatwe telegraphlnt 
eq"atl.3" 

1. Introdnetion 

The evolution of a conservative system is expressed in terms of a unitary group U, on 
a separable Hilbert space %. The time parameter f takes all integer values or all real 
values. The group property reflects the reversible character of the evolution. Typical 
examples of conservative systems are the evolution of phase densities of Hamiltonian 
systems and the evoiution of wavefunctions or density operators of quantum systems 
The hyperbolic wave equation is an infinite-dimensional Hamiltonian system which 
defines a unitary evolution in the Hilbert space of initial data with finite energy 

The conservative systems for which non-unitary transformations to dissipative 
systems have been constructed are qualified by the existence of internal trme. 

An internal time operator for the unitary evolution U, is a self-adjoint operator T 
with the following property: 

ULTU, = T +  tz. (1) 

The internal time operator is canonically conjugate to the anti-self-adjoint generator 
L of the unitary group U, = eL' 

[ L ,  T ] = - I  ( 2 )  

The time operator T allows the attribution of the average age (4, T$) to the states 
+ E  Z The average age of the evolved state U, keeps step with the external clock 
time t 

( U,*, TU,*) = (*, 7.b) + 1. ( 3 )  

Internal time operators for unitary dynamics were introduced [l]  in the context of 
unstable dynamical systems of the Kolmogorov type. The unitary group U, defines the 
evolution of densities in the Liouville space and the spectral projections of the time 
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operator are the conditional expectations over the time-evolved K-partition. Similarly, 
quantum systems admit time operators on the Liouville space of density operators if 
the Hamiltonian has an absolutely continuous spectrum [Z] Time operators were also 
introduced for relativistic fields [3-61. 

Conservative systems with internal time are related through non-unitary transforma- 
tions to a class of autonomous dissipative systems whose evolution is described by a 
contraction semigroup U: on a Hilbert space Z that approaches the unique equilibrium 
monotonically for long times. The time parameter 1 takes positive integer valses or 
positive real values if evolution is direct-d towatds the future. The approach to 
equilibrium is descnhed by the condition 
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/I W,*Il' (4) 
decreases monotonically to zero as f + +m. Here the vectors +E .% represent the 
non-equilibrium deviations of the physical system in consideration. The qualifying 
feature of such systems is irreversible undirectness of the evolution Typical examples 
of such dissipative systems include the heat equation, the Boltzmann equation, the 
stationary Markov processes and the hyperbolic telegraphist equation 

The generators of dissipative evolutions W, =e" satisfy the property 

(@+, *)+(*,@*)GO ( 5 )  
for every $ in the domain of @. This condition is equivalent to the condition that the 
dissipation part of @ is negative: 

(61 
Operators satisfying ( 5 )  or (6) were called dissipative operators by Phillips [7] who 
introduced the concept in his study of dissipative hyperbolic systems such as the 
Telegraphist equation. 

The non-unitary transformation theory of dynamical systems with inrernal time has 
been developed as an exact theory of irreversibility in the context ofstatistical mechanics 
by Misra, Prigogine and Courbage 18-13] where the positivity of the states $ is 
necessary. Here the condition of positivity is relaxed and the non-unitary transformation 
theory is applied in the more general context of unstable dynamical systems with 
internal time such as the wave propagation. In this particular case, the wave equation 
is transformed intc the telegraphist equation. 

f(@+ @+) = K G 0 

* -~-~~..-z.̂ _._._.e.~~~.!.~ 
L. lllr ,,uu-uurrary xra"a.olmarl"n 

Unitary dynamics U, with internal time T are related to dissipative evolutions Wz 
through the intertwining transformation A: 

AV, = W,h t a o .  (7) 
A non-unitary similarity transformation h may he constructed as an operator 

function of the internal time T 
+= 

A = A ( T ) =  I, A(T)~$, .  (8) 

P, are the spectral pcojections of the time operator: 
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The function A ( i )  can be any positive real function decreasing monotonically to 
zero as T-, +W. The resulting dssipative evolution 

W, = ,\U,A-' 1 2 0  (10) 

awes  as a change of representation of the dynamical evolution U, through the 
non-unitary transformation A. The function A(T)  acts as a weight over the contributions 
of the spectral projections of the time operator to the evolution. 

The dissipative character of the evolution W, follows immediately. For any state 
$ in the domain D,, of A 

which decreases monotonics..j ti zero as r +  +W. 

operator. However, the inverse operatoi A-'(T)  cannot be bounded. 

domain D ,  is dense [14]. 

If the function A ( T )  is bounded the13 the operator A ( T )  is a bounded self-adjoint 

If the function Mi) is not bounded, then the operator h ( T )  is self-adjoint If the 

If the domain D,, is not dense then the contraction semigroup is defined on the 

Typical examples of the weighting function A(T) are the logarithmically concave 
sxhqgce of v ~ ~ t ~ ~ ~  $ fer -h:ch LFr,$-l$ I- $2 k e  do-gi:: E, 

functions of the form 

r )  = 

where y (  r) is a convex function. 
For the simple choice 

h(i) = e-?' (11) 

where y is a constant parameterthe unbounded operator A( T) = eCYT is densely defimd. 
To see this let us first note that for any vector $, the measures dllP7$ll' associated 

with the spectral projections L?, of T are absolutely continuous because the time 
operator has absolutely continuous spectrum. Therefore they can be written as 

d ~ ~ P & ~ 1 2 = ~ + ( ~ )  d7  

where p * ( ~ )  is the corresponding spectral density defined as the Radon-Nicodym 
derivative of dlJP,$II' with respect to the Lebesque measure di. 

The set D of all vectors JI E % for which the corresponding spectral density py,(.) 
belongs to the space spanned by all functions of the form e-'-f(T), f ( ~ )  being a 
polynomial in the real variable T, is dense. 
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It cail he easily seen that the domain D is included in the domains of hoth A and 
A-' and that D is also invanant under U,. For example, 

which is finite for p<,(,(.) of the form eC"f(T) where f ( T )  is a polynomial on the real 
variable T. 

----c--- .I_^ ~ ----. ~ - -  , ̂.._I & - I  n" ..,-,, ".. ,La "nmin ).,..... w, n r ,  *-I 
,,,S,S,Y,S, ,I_ "~C,aLL",J _. 0.1" .. ....* .... .... .,,- '._,'. 

defined on the dense domain D and since W, is a contraction semigroup, its domain 
can be extended to the entire Hilbert space %. 

w,=Au..c'=~"' 

@ = ALA-'  = L+ K 

The generator @ of the A-transformed evolution 

is the dissipative operator 

with 

the negative dissipation part (6) of @. 

generator @ The strong limit [IS] definition of the generator means: 
The proof follows immediately. Consider any vector $ in the domain D: of the 

Since [U,(A(T+f)-A(T))A-']/f converges strongly to A'(T)A-l and (U,-I)/f  
converges strongly to the anti-self-adioint generator L: the generator @ is the sum 
L+A'(T)K'  in the common domain of L an3 A'(T)A-': 

The domain Do of @ depends in general upon the form of A. One needs to prove 
therefore that the domain Dm is dense for any wncrete choice of the A-transformation. 
For example, If X(T)/A!T) is a bounded rea! function, then De = DLr which is dense, 
as L is an anti-self-adjoint operator. This is indeed the case for the special choice (11) 
of the A-transformation. For this choice the dissipative generator @ is 

(13) 
In the case of Kolmogorov systems, where the spectral projections of the time 

operator are the conditional expectations over the time-evolved K-partition, the non- 
unitary similanty A leads to a Markov process. This was first proved fcr the Baker 
shift [81 and then for Bemoulli 191 and Kolmogorov [lo] systems. 

@ =ALP = L -  y:. 
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An intertwining transformation is also provided hy the spectral projection Po or 
any of the spectral projections P, of the time operator (9). The proof is given [li] for 
K-Eystems where the condition of positivity preserving for the projections P, is also 
assumed. The resulting dissipative evolution 

W,=PU,P 

where P is any of the projections P,, is the restriction of the dynamics U, into the 
P-subspace. 

It is also of interest to mention what is known on the inverse problem, namely, 
what kind of unitary dynamics can be transformed into dissipative evolutions through 
intertwining transformations: 

(i) If the intertwining transformation is a projection, the condition that the unitary 
dynamics admits a time operator is necessary. In this case the unitary dynamics is a 
dilation 1161 of the dissipative evolution. The corresponding theorem was stated in 
[ I l l  and proved in [13] for Kolmogornv systems, where the important question of 
positivity of states arises. 

(11) If the intertwining transformation A is a non-unitary similarity, then the 
operator M = A*A is a Lyapounov operator [I] for the unitary dynamics and it is only 
known [l] that the generator of the unitary evolution must have absolutely continuous 
spectrum. This condition i s  of course weaker than the existence of the time operator. 
In the case of unitary evolutions of phase densities, this cnnditinn implies the strong 
mixing property, which is weaker than the Kolmogorov property. 

3. Non-uuitary transformation of the wave equation 

The wave equation 

J : ~ = A +  

is a conservative dynamical system with internal time 13-61 The particular choice 
A( T) = eOT for the weight function of the non-unitary similarity transformation trans- 
forms the wave equation (14) into the dissipative telegraphist equation: 

J:$ = A$ -2yJ,$ - y2$ $=A*. (15) 

The wave equation is an infinite-dimensional Hamiltonian system: 

The space of square integrable initial data (+, +) with finite energy 

H = d(x)f(*'(x)+IV*(x)j2) (17) I 
is the Soholev Hilbert space 2 with the scalar product 

The time evolution U, of the Cauchy data in 2 [17] is 
cos B1 E-' sin Et) 
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where B = a .  The group U, preserves the energy (17) and the scalar product 118) 
The anti-self-adjoint generator of the unitary group U, = eLc is 

I E Antoniou and B Misra 

An internal time operator for the wave equation has been constructed [3-6] from 
the representations of the Polncari algebra. The explicit form of the time operator IS 

For the psrticular choice A(r)  = e-" for the weight function, the geneiator L glven 
by (20) is transformed into the generator @ through (13). 

7%- A *-m..cf--a.4 ..,owe a n . n % + i l m  .= tho rplanrr-h.rt P n , s - t i n - .  
.*.C ' . -L .~. . I .YL.Y*Y .."*U \I'IYYL."L. L..* ..,..6.Yp...'. 

. .  

W a:$= A&2ya,$- y2$. 

As a result of the particular construction of the A-transformation, the coefficients 
- 2 s  and -y' of the last two terms of (15) are not independent. The denved equation 
(15) IS not therefore the most general telegraphist equation. 

The telegraphist equation is a dissipative hyperbolic equation describing waves 
propagating with exponential dissipation of the amplitude. This equation arises also 
as a relativistic heat equation if we introduce finite propagation velocity into the heat 
equation, which is Galilei invariant and assumes infinite propagation velocity [IS]. 

4. Concluding remarks 

The non-unitary transformation of dynamical systems with internal time arises as a 
limitation on the contributions of the future spectral projections of the time operator 
to the dynamical evolution. In the case of projection Pr3 all future projections P,, 
r>  T, are not realized and the evolution is restricted to the P,-subspace. In the case 
of similarity A ( T ) ,  the future projections are weighted with the decreasing function 

This interpretation of A-transformation has a clear meaning for Kolmogorov systems 
where the spectral projections of the time operator are coarse-graining projections of 
conditional expectation over the cells of the I(-partition. The progressive refinement 
of the K-partition expresses the dynamical instability. 

The resulting dissipative Markov semigroup W, is a best prediction for L:, made 
by an observer who cannot follow precisely the progressive refinements of the K- 
partition ad infinitum. 

In fact, this construction bas been proposed as an exact theory of irreversibility 
[7-121 in the context of statistical mahanics where the positivity of the states is 

NT). 

.a " Y Y L C P . . . .  
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In this work the condition of positivity is dropped This permits us to consider 
more general functions MT) which bring about the similarity transformation between 
coiiscwa$ive and di$sipatke evolutions. 

A-transformations may also be seen as 'transmutations' 1191 relating properties to 
conservative equations with properties of dissipative equations. 
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